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ABSTRACT

A microscopic model for the metal-solution interface is presented,
which, for the first time, includes both a non-ideal treatment of the
metal and a molecular model for the solution side. The metal is described
by a jellium including electron-ion pseudopotential. The solution is treated
as a mixture of hard spheres with point dipoles (solvent molecules) or point
charges (ions). The statistical mechanics is solved using the mean sphe~
rical aﬁproximaiion. No a priori separation is introduced between compact
and diffuse layers. A simplified version of the model is applied to the
case of Hg-DMSO systems. - '
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INTRODUCTION

The classical theories of the ideal polarized electrode are based on
two premises :

a) The metal has no direct effect on the differential capacitance C,
although it does determine the potential of zero charge and affects the orien—
tation of solvent molecules. From an electrostatic point of view, every metal

acts just the same, the only interaction being that of ideal images.

b) The solution side has two layeréz the excerﬁal, or diffuse layer,
which can be described by such simple models as the Gouy-Chapman (G.C.)
theory, and the intermal. or compact layer, which in the absence of specific

adsorption is formed only by solvent molecules.

These two premises are now being challenged. The important progress
in the theory of metals and metal surfaces in recent times makes it hard to
admit that the metal is totally umresponmsive to changes in the electrolyte.
The surface charge distribution in the metal must respond to local changes in
the electrostatic fir'4 produced by modifications in the ionic and solvent
distributions. Surely this will produce contributions to the differential
capacitance, that will be different for each metal, since the response to an
external field is different for each metal, and depends on details of the
electronic structure near the surface. In previous work [1]- [3] an estimate
of these effects was given. The solution side was represented by a layer of
dielectric material. In a recent publication, W. SCHMICKLER [4] has discussed
a similar model. His conclusions about the role of the metal are similar to

ours.

On the solution side, recent advances in the treatment of molecular
solutions [5][6], that is soluticns in which the solvent is not treated as a
continuum, have made it possible to treat the statistical mechanics of the
solution side of the electrode interface. Although the approach, in principle,
can handle realistic models of solvents and ions, the initial work has dealt

with a model in which the solvent is represented by hard snheres with point
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dipoles [7]. This work was revealed two important deficiencies of the classical
treatment :

a) The separation of the inner and outer layers for the solvent
orientation process (or better polarization) implies a violation of Maxwell's
equations. The dipoles of the solvent are oriented wherever there is an
electric field, that is, throughout the entire electric double layer.

b) The use o%%ﬁ?ilec:ric constants is also unwarranted. Although
this is a much more subtle problem, recent theoretical work [8] has shown
that dielectric constants have a clear meaning only for large systems (ther—
modynamic limit) and not at the molecular level. The polarization is the local

variable that is required.

In this work we present a comprehensive theory in which all of these
concepts are included. In section 2 we review the models of the metal and

solution sides of the interface. The-potential drop and capacitance are then

computed using a simple GMSA based model which has the obvious advantage of

analiticity and simplicity.

In section 3 we discuss the electronic deasity profile of this model.
We consider then a model in which the physical parameters are those of an

alkali-ion in DMSO in the neighborhood of a mercury electrode.

In our model the puint of zero charge is not the point of zerc
potential (which is the case in the restricted primitive model) : we discuss
also the change in the surface potential of the metal induced by the pgesence
of the solution. The influence of some of the parameters, and detailed compa-

rison between Hg and Ga electrodes will be discussed in future work.

In the last section we examine possible improvements in our work.
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2. MODEL FOR THE SURFACE INTERACTIONS

Consider a plane, ideally smooth electrode. z is the distance *from
the metal surface. The bulk metal is then given when z + -« . For the
metal we use a jellium model (with inclusion of the electron-ion pseudopoten—
tial). The details are given in [9], but for the sake of completensss we will
give an outline of this work. The metal ions are taken as a continuum of

density p for z < 0 . In other words
p(2) = p8(-2)
wnere 8(x) is the Heaviside function
8(x) = 1 x>0
6(x) = 0 x<0

The electronic gas is free to move, but its equilibrium distribu—
tion n(z) will be the ome that minimizes the total surface energy of the
system. The electron-ionic background interaction is given by a pseudopotential.
The properties of the electron gas, suéh as the kinetic, exchange and correla-

tion energies are computed using the local approximation.

On the solution side the ions are represented by hard spheres of
diameter o and charge = %, and bulk density 0;- The solvent is also repre-
sented by hard spheres of diameter Sg» point dipole u , and demnsity py-

.-

We assune that no chemical reaction can take place, no miscibility
between the phases [10]. However, this model does not exclude the existence
of a surface layer in which all the particles are present. In fact, the

existence of this layer is consistant with the contemporary cheories

** We use Bohr atomic units e = electron charge
m= " " mass
e =1 = |

Bohr radius a_ = .529 A
Energy unit : | Hartree = 27.2 eV
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of the metallic surfaces. Any model which does not include this layer leads

to predictions which are incompatible with experiments [1][11].

In our model, the electrons can diffuse into the ionie solution.
In actual practice, calculations -show that both in the interface with the
vacuu&}%] or with a dielectric filu!gl the electron density spill over is
very small. However the change in the spill over with the electrode charge

will give a direct contribution of the metal to the differential capacitance

[11041.

The metal electrons in the solution are subject to electrostatic
interactions (electron—ion and electron-dipole) but also a repulsion due to
the core electrons of ions and solvent molecules. These are represented by
the Harrison repulsive potential [9].

There are several parameters‘in our model that are fixed a priori,
but which should come out of a first principles calculation. One of these
quantities is the distance of closest approach of the ions and solvent to
the plane z = 0 (the metal surface). We will assume that ii is just the sum
of the molecular radius of the solvent or ions (which for this simple model
are considered to be equal) and the radius of the metallic ion. In reality,

this parameter should arise from a self-consistent demsity fumctiomal calcu-
lation [13].

In short, we will assume that there is an ideally smooth wall,
located at z = ¢, which cannot be penetrated by either ions or solvent mole-

cules. The distances of closest approach are
L

» .

2.1 = § =+ Ud/Z for solvent molecules
There is also the problem of surface smoothness and structure.

From recent experimental evidence, it is known that certain metal surfaces

are subject to structural changes during chenisorption processes . In

these cases the surface overlayer changes its structure. It is quite concei-

vable that in an intrinsically more labile environment such as that of liquid

metals, the metal overlayer would also respond structurally to changes in

potential.
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Furthermore, the question of surface ripples (capillary waves) at
the interface, and its effects on the structure and thermodynamics of the

electrode is not discussed. We hope to address these and other questions in

v

future work.

Summarizing, the ions and dipoles in the solution do not see simply

X o a hard, charged surface, but rather the sum of'a charged surface (located at

E o § + 0/2 ) and a distribution of electron density beyond the plane of closest
approach.

[' Even this simple model is not easily amenable to a complete nume-

rical calculation. We will, therefore, in this first communication , use a
simplified theory that has the advantage of giving explicit analytic

expressions for the physically relevant quantities.

b 3.7A SIMPLIFIED MODEL

For simplicity, we shall discuss only the restricted model in which

o, =0, =0_= o4 = O (Although not im published form, the results for

g, =0 # oy are also available). We neglect also the effects of the electron

density on molecules and ions in the solution. We shall leave the discussion

of the validity of this assumption for the future® The solution is represented
by the MSA [5][6] which is only qualitatively correct. Near a charged

F- interphase a simplified theory, valid presumably for dilute solutions, has

] been developed by Blum and Henderson [7]. In this thecry, the dipolar interac—
tions are decoupled from the ionic distributions, which are given by ;he
modified Gouy-Chapman (MGC) theory. We are thus satisfying the electrostatic

part of the contact density theorem. The simplified model of the interface

———— Y

is given on Fig. !.

The charge density profile is given by

‘K(Z—dl)

ql(Z) = =X qM e (H




where K is Debye's inverse length and

a = 8 + 6/2

The total excess charge of the solution side is

q, '-[ dz qi(z) - =

— 1

Ay (2)

The electronic demsity profile is postulated to be of the
form [1][9] :

, a(z) = all -4 &%) z <z
r - . ' ‘ (3)
i = (n/2) e—a(z-zo) 2”2z
¢ o
where n is the bulk metallic electron demsity..Clearly, the total excess
o charge on the metal side is '

( °=
)
b

ay = [ dz [p8(-2) - a(2)] = = nz_ (%)
-0

This last relation also defines z,.
! For a given value of a , and Q> the charge and polarization (P(z))
: profiles are computed from the theory [7]. These in turn yield the potential

V(z) and electric field E(z), which are obtained by solving Poisson's
f¢ equation
| 2
- .

E —a-a—E—z(L). > . L_Y.(—;_). = 4T [oe(—z) - n(z)
! 3z ()

¢ + a(z-dl) (anoe-K(z-dl) - ézégl}]

{ The potential V(z) is continuous in all space. Because of the
discontinuities in the density profiles, V(z) has a different form in the

regions
I) -2 <2z<90

II) 0< 2z < dl
' I1I) di € z2< o

B . Jon n o o e o oan 4
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The solution of (5) is straightforward, and is explained in

Appendix I. The total potential drop across the interface is

2
(az )
AV = V() - V(=) = -‘i’i‘zl [ az_(ad, - az_) + —g— = 1]
4mnz ¢ = (6)
[}
+——+u4r [ P(2) dz

4
The integral in this expression is explicitly known. The readar
is referred to Ref. 7 (eq.l5) for the derivation. The result is
@
4r [ dz P(z) = lim B(s)

dl s+0

A,
The Laplace transform P(s) is

;(s) = 4t [ dz &% p(2)
i} 4mup 4 ) Budmq,, y i P
3 vz krsals
2 2
8 8 8
x—2 (1 -5 3 16 L 54 ()1}
83 4 By, eg 1

Here P4 is the bulk number demnsity of solvent molecules. The
coefficients 83, 86 and 812 are functions of the bulk dielectric constant €
of the solvent, and are given through an auxiliary parameter A

- 32 . - 3 . - 1+ .
R U L T S VLI R CT O <)

The auxiliary parameter A is computed from the equation

XIS
16

(3]

(8"
The functions ¢,(s) and A(s) are defined by
$,(s) = 1/ [1 - s0 - ™%

As) = 1= 20() AP - 1) =g () OF - )




vith  9,(8) = L[ ()t 3] 9

Then
@ - 4Tnz

4 [ dz P(2) = ——> ‘:;‘ [1+52‘-’-(1-%)] (10)
d
lv

Substituting into equation (6) yields

{ 4 2 4Tnz

AV = --E% - 2mnz_ +
. o

E‘ o

at the point of zero charge (z° = 0), this expression simplifies to

Usegy e CEHD+Fa-p an

| AV = -"L'z‘ (12)
s‘ a

The potential drop across the interface is a function of only n
and o , which are metal parameters. This however does not mean that the
ﬁ& potential AV is equal to the surface potential of the metal-vacuum interface
Xg? since a is also a function of the solution parameters. In the limit a-+e
{ the electronic profile tends to n(z) = n G(z-zo), and then Eq.(1l) is not
! the same as the expression given in[l4]. There are two reasons for this
‘! discrepancy. First, the term Znnzi does not exist in[14], because now the
charge is not localized at the plane z = 0. Secondly, the third term in (11)
is not that of[14]. However, if dl = §g/2 then they are identical. This
means that an additional capacitance term appears because of the shift &

in the metal background profile.

The differential capacitance of the system is

AV AV AV
3q 3q,, nazo

1
3 c
using (11), we obtain

br LKoo, ezl
-—[l‘2 (1 + )‘)] + 47[$d zol

1
c <e

Lan 4

(14)

ad

s —1
o 9z
o]

9 2
-411’—32—0' [1/a"] + 47




In this expression the first term of the right hand side is the
result of the MSA [7][8]. If the solvent molecules are shrunk to point
dipoles (ca -+ 0), one should recover, from (14) the differential capacitance
of the modified Gouy Chapman theory. Otherwise [14] one can define the effec~
tive dielectric constant.

€ (
. 15)
e—l
1 + _x_

which then yieldsthe MGC result with the effective dielectric constant E.-Hc

E =

must remark that in spite of the formal ressemblance, the physics is diffe-
rent, since the solvent is polarized throughout the entire electric double
layer.

The second term of (14) arises from the fact that the electrode
charge is not localized at 2z = 0. The next term is due to chénges in the
dipolar surface layer of the metal as a function of the excess charge. And
thF last term reflects the fact that the distance d1 is also a functiom of
the excess charge. A detailed discussion of this fact can.be found in [3].

At the point of zero charge this term vanishes.

Because of the intrinsic limitations of the MSA, we will limit

ourselves to small surface charge densities around the point of zero charge.

Thus, for a given value of dl’ we only need to compute @ for the

differential capacitance C.

4. ELECTRONIC DENSITY PROFILE

The =2nsatz  (3) on the eleczronic density nro

M

ile is particularly
convenient since n(z) only depends on the parameter a . We will compute

this parameter by minimizing the surface excess energy Us' The kinetic energy
and the non-coulombic part of the electron - neutralizing background are not
affected by the presence of the solution, and therefore we use the expres—

sions given in Ref.[9] (Eq. 14 with a = 8).
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2 (- 1.6423 022 + 0.25037 21’3 + .006584]

(16)
+ an(log2) /72

The pseudopotential contribution Ups to the energy is given by
(Eq. 10 of [1] witha = B8) )

2 =R A .
- - 2mm <jz] _ e M o az -az
Ups 3 [e o 3 (Ao R+ 5+ 1) (e7° +e 79 an
_ 2 2 Ao o
vollzg] v 8y 2/2 = a4 RY/2-RY T+ 2

where Ao and RM are the pseudo potential parameters of Heine and Animalu
(see also [1] ).

The electrostatic energy is computed from the charge and polariza-
tion profiles, and the potential V(z) which has been calculated in Appendix I.

We find
u_ = _“,nZ [- 8az 8(cz ) + 5 + 4oz e *(d17%0) ’
es 293 o o %0 ©
o
' 2az e-a(dl_zo)
~ - 4zl 2 ] (18)
1 + K/a
- 2m [ dz P(2) (%) | ¢
I t

A

The last term c, consists of the remaining contributions o the

energy which are not functions of a, and thus irrelevant to our calculation.

The term before the last in (18) represents the interaction of the
electrons with the local polarization of the solvent molecules in the solution.

"N
This contribution is easily calculated from the Laplace transform P(s) (Eq.7)

- ——

_ 2m ] dz P(z) e-a(z—zo) - 2mn o220 ;‘(a) (19)

-10~
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There is also another contribution due to the repulsive interactions
of the electrons and the electronic clouds of the ions and solvent molecules
[9]). These interactions are represented by Harrison's pseudopotentials, with
parameters Ai (for iomns), Ad (for solvent ). This interaction is independent
from the ionic charge or solvent dipolar orientation, and because of the use
of the MSA, it will depend only on the total density profile p,(z). Since
all the particles are hard spheres of equal diameter, a single parameter A
(a weighted average of Ai and Ad) will be enough for our purposes. Wa get

u - A f ar [ dz' n(z) &(r - ¢') po(z') (20

- Xdpd * 2)\19,,_
A =
+ 2p+

Pq

where Pg is the dipole concentration and P, is the (+) ion concentration.

The integration is easily performed

U - —>‘2“ [ dz &2(27%) p,(2) ©@n
d
kY N
- & % g (21")

where B;(a) is the Laplace transform of the total density distribution
function ( po(z) - pd(z) + p+(z) +p (2) ) . We get

X (d1-2.) 8§5) !
n —a(d]-z
U, = p —=— e o (22)
B °o 2 Bé"’) a §(ia) .
where Bgs) =} + 2n H Bés) =] -n H ETZ = (1 + n/2)

. T 3
with n =2 (py + 0, *0)G

(s

and Q(ia) = 1 - 12 5@ 85

213857 - 120 o, 8{F78DH?

The functions ¢](a) and ¢2(a) are defined by Eqs (9).




The total surface energy is then

U = U. +U

s kin exc ¥ Uinh * ups * Ues + UB

Using Eqs (16-22) we get, finally

U A
= 1 .5 o Ry az
> - clla+c2a*:§[E-Zon-[l+-a—(l+a.RM)]e BM(e%%0 + & O%6)
; Ao 2 )
-ZQRM¢-E-[2+(az°) -(Q'RM)]]
-a(d,-z) az :
te + 2+ —[-1+ 1 - (
aQlia) o aw a@t T IR

The coefficients Cy» C,s E, D, are given in the Appendix 2.

In Equation (23), all the electrostatic interaction terms with
the solution cancel at z, = 0, the point of zero charge. The shift in the

surface potential of the metal, when it is taken from the vacuum to the

solution is due to the electron-solution repulsive interactionms.

Q.

(23)

+ ¢,(a)]]

The minimization of Us yields then @ . This parameter is then .

used to compute the properties of the electrode with the aid of (11)
and (19).




5. RESULTS

Clearly the MSA as a weak coupling parameter theory is not suited
to describe the behaviour of hydrogen bonded solvents, such as water. However,
an aprotic solvent like DMSO can be reasonably described by the MSA. Indeed,
with the experimental values for the density Py (14.05 M/dcm3 at room tempe-
rature) and the permanent dipole moment u ( ~ &4 Debye), the MSA yields
€ = 58 instead of the experimental value 47.15 (see for instance [8] for
the MSA expression of € ). From (8') this.gives for A respectively 2.49 and
2.39.

From (14) we see that the molecular contribution to the differen-
tial capacitance C depends only on € , while from (23) a depends on A (or €),
P4 and 4 . We have checked that changing A does not affect significatively
the value of a which minimized Ug» and hence the metal comntribution to the
capacitance. Therefore we have used A = 2.39 (i.e. € = 47.15) in the nume-

rical computationms.

We now choose the effective diameter of the DMSO molecule so that

the parameter -
n = -% Pg o = 0.45

which is the value of the volume fraction characteristic of many liquids.
This yields g = 8.81 a.u. (46.66 ;), which is a little small, but not
unreasonable for this molecule. The ionic diameters are taken also to be
8.81 a.u. Fig. 2 shows the correspondiag MSA density profile for the mole~

cules which have their dipole moment normal to the interface.

The electrode is liquid mercury, for which the parameters n, RM
and A are taken from [9]. For the mercurv-vacuum interface we found
&, = 0.90! u.a. and a surface potential £y = 5.34 eV. Since we will also

include some results for gallium, we refer the reader to our previous work

[91].

Two of the parameters of the problem are free, and have to be

selected using physical intuition. They are 3 and A . It seems realistic
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to choose the value of § between O and Rc the crystallographic radius of
the ions in the metal [9].

For water the parameter X has been estimated to be ™ 15. For DMSO
we might expect an even higher value since there are 54 electrons in DMSO
against 10 in water. In table I we show the influence of A on a assuming
that 4, = a/2 or d1 =R_+ 0/2 . As expected the repulsion term with the
solution causes an increase in the values of & . This is similar to what we
found previously [9]. In fig. (3) we have plotted the shift in the surface

potential of the metal me = 4mn 6%5 --J%) calculated at the point of zero
charge as a function e %  of the distance dl' The corres~-

ponding case of gallium for A = 30 is also shown.

The repulsion from the solution is not enough to keep the electrons
in the region z < dl' There is always a small charge spillover, - 8q, in

the region 2z > d!.

-8q = - £ az B o0(2=20) %%'e-a(é-zo)
1

In fig. (4) we show 6q(dl) for both Hg and Ga. The spillover &q
is larger for Ga than for Hg.

In the simple model presented here, this effect has been neglected
in calculating the charge distribution and the polarization in the solution.
It is clear that this approximation is less justified for Ga than for “Hg.
However, the mathematical tools fo include it are available and we will

indeed discuss these effects in a near future.

The facrt that there are electrons on the solution side even at the
point of zero charge, indicates that the solvent molecules must be polarized
at the interface even at the point of zero charge. Note that the ratio

8q(Ca) / 8q(Hg) 1is not simply the ratio of the electronic densities.

The differential capacitances for the mercury electrode are presen-

ted in table II. They were computed from the curve AV = f(qM) by numerical
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differentiation. With the parameters of this article the zero charge capaci-
tance corresponding to an ideal metal would be

- X .'2
Ci yr T 7.94 yF/ecm

We see that the total capacitance crucialy depends on the
distance d,.

1
When d1 is large the value of C is greater than Ci but the effect
of the nomideality of the metal remains small. On the other hand, vhen the

distance of closest approach decreases (for instance if there is interpene~

. tration between the metallic ions and the particles of the solutionm) this

effect becomes quite important and the influence of A is not negligible (for

comparison the experimental value if 18 uF/cm? for Lic104 ions [15] ).

First calculations show that the differential capacitance for Ga
would be greater than for Hg, as observed experimentaly.

I A J R




6. CONCLUSIONS

We have presented a realistic model of the metal solutiom interface,
in which the metal is not an ideal smooth metal, but a jellium model. A
simple discussion of this model is given. The results confirm earlier calcu-
lations [1]-{4] that indicate that the metal makes an important contribution
to the differential capacitance C.

The salution side of our model is a mixture of hard spheres vith
charges and point dipoles. No a priori separation of ccampact and diffuse
layers is postulated in this model, and it also does not involve the use of
local dielectric comstants (a meaningless quantity). The calculations show
that the solvent molecules are polarized even at the point of zero charge.
This is so because of the spillover of electromic charge into the solution,
which produces non zero electric fields in the metal-solution boundary layer.
Although we have treated this effect only crudély, the recent work on the

GMSA [16] of the ion dipole mixture allows a comsistent calculation of this
effect. '

We show also that the distance dl of closest approach of the metal
ions and the solution ions is a crucial parameter in the determination of
the differential capacitance C. However this is also a drawback since the
fact that dl is unknown makes the comparison of C with experiment a not very

meaningful excercise. Indeed a value of dl which fits the experiments could

be found.

-
However, the model that we have discussed here represents the most

comprehensive one that we are aware of. We are undertaking a detailed study
of the influence of various parameters, such as ionic concentration, demsity
and dipole moment of the solvent, etc. on the differential capacitance. The

results will be published in the near iuture.
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C : hy : 15 : 30 : 45 :
o : d; =R+ /2 :+ 0.905 : .0.908 : 0.911 :
: = : d, =R, : 0.916 : 0.932 : 0.947
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Table I - Values of the profile parameter a (Hg) as a

function of c!.1 and A . For the bare surface e, - 0.901 a.u.

~nja
+
[
o

(S]e}

15 20.8 100

30 18.7 58.8

45 8.7 16.6 43.4
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Table II - Differential capacitance of the interface (uF/cmz)

th

as a

uncsion of dl and A. The concaentration is ¢ = 3.1 M/1.
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" FIGURE CAPTIONS
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[ Fig. 1 : Simplified model of the interface.
[ § position of the ideally smooth wall.
h 0 diameter of the ions and solvent molecules.
i Fig. 2 : Jellium model and density profile of the dipoles normal to the
; interface. ’ '
{
; —Fig. 3 : Dependenfe of me on the parfmeter d1 for different choices of A.
- (1) Hg A = 15 . (2) Hg A = 30
« (3) Hg A = 45 (4) Ga X = 30.
Fig. 4 : Dependence of the charge spillover G_q on the parameter dl for Hg
- and Ga. .
r;‘_ . (X = 30 and C = 0.1 M/1).
b -
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APPENDIX 1

Electrostatic Potential Profile

Integrating (5), we get, (using also (1) and (3) )

a) For negative metal charge Ay (z° > 0)

V(z) = - 11;— ea(z-zo) (-=2<z<0)
a
V(z) = 2'lm(zz e*g(z-zo) / 0.2) (0
V(z) = 2mlz (2z - z) - 2/a® + & 2(F7%0) so?]
V(z) = 21m[z°(2d1 - zo) - é/az + e-a(z-z°)/a2] +
z 4Tnz
+ 41 I dz' P(Z') -—0 e"K(Z‘dl)
;! K
1
b) For positive Gy (z_<0)
--2m alz=zy) -
v(z) az e o ¢ <z< zo)
v(z) = = 2mn [(z - zo)2 + 2/0.2 - e—a(z—zo)/GZ]
. v(z) = 2mn [z, (2z - z ) - 2/0.2 + e-a(z—z°)/a2 1

For d1 < z < » the equations are those of the case Ay < 0.

<z<z
2 o)

(zo <z« dl)

4ﬂnz°/g
(z>dl)
(z°<,2< 0)
(<z< dl)

e 4




—TTTTY T Y v vw

Td

MEEE i en o a2

v

v T T v

R
-

B e e Shae i oS Y DY tn - v . AoSE Rl Rk S At St S M A S S AL

APPENDIX 2

We give explicit formulas for the coefficients of Eq. 23

2/3 1/3

c, = -w'; [~ 1.6423 n2/3 + 0.25037 n}/3 + 0.006584]

1 log 2
2 ™ 72

A, (+2n)
2Tt o (l_n)Z

2
8m u” oy

L~ XTIV

These coefficients are computed once and for all for a given metal and solvent.




ionic density
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